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Acceleration Amplifications in NIF Structures Subjected to 
Earthquake Base Motions 

D. McCallen 
Center for Complex Distributed Systems 

1.0 Background 

NIF technical staff have questioned the possibility of obtaining acceleration amplifications 
(i.e. amplification of the ground acceleration values) in a structure which are significantly 
higher than the acceleration amplification exhibited across the period range in the input 
response spectrum. This note utilizes a simple example to illustrate that the acceleration 
amplification resulting from the dynamic response of a structural system can indeed be 
significantly higher than the amplifications indicated in the response spectrum, and that 
the GEMINI program is computing the appropriate acceleration levels for a simple MDOF 
system. 

2.0 Equations of motion for MDOF and SDOF systems 

MDOF 

The governing coupled ODE'S describing the motion of a MDOF system subjected to base 
motion are given by, 

Where jc,( t)  is the time variant acceleration of the ground and the subscript "r" denotes 
relative displacement quantities (i.e. displacement of the structure relative to the ground). 
Equation 1 also assumes that all degrees of freedom must subtract the ground displace- 
ment in order to develop the relative displacement term, hence the unity vector on the right 
hand side. Classical modal analysis of this equation is developed by writing the relative 
displacements of the structure as a linear combination of the natural free vibration mode- 
shapes of the system, 

November 29,1999 1 



Where [A] is the matrix containing the natural modeshapes of the structural system and 
{ Y (t) } is the vector of “normal coordinates” which define the amplitude of each modal 
contribution. Substituting EQ 2 through EQ 4 into EQ 1 yields, 

In EQ 5 the time argument has been dropped for simplicity, the time variant nature of the 
response is implicitly assumed. In addition, the negative sign on the right hand side has 
been dropped for simplicity sake. Premultiplying EQ 5 by the transpose of the modal vec- 
tor yields 

Orthogonality of the natural modeshapes 

Significant simplification of EQ 6 can be obtained by exploiting the orthogonality condi- 
tion of the natural modeshapes. The free vibration eigenproblem is given by 

Where {Aj} is the ith natural modeshape and mi is the ith natural frequency in rad/sec. 

Premultiplication of EQ 7 by another mode { A  j } T  yields, 

For the second natural mode {A j} the eigenproblem can be written 

Taking the transpose of both sides of EQ 9 and post multiplying 

Subtracting EQ 10 from EQ 8 yields, 

(0) = (coT-w:){A~}~[M]{A~} 

Which can only be true if 

{ A ~ I ~ [ M I { A ~ I  = 0 

by {Ai} gives 

Combining EQ 12 and EQ 8 then yields 
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Equation 13 and EQ 12 provide the orthogonality relationships central to modal analysis 
techniques. Invoking EQ 12 and EQ 13 in EQ 6 yields, 

[ M * ] { Y }  + [C*]{Y} + [ K * ] { ‘ y }  = {L}Xg( t )  (EQ 14) 

Where, as a result of the orthogonality conditions in EQ 12 and EQ 13, [ M * ]  and [ K * ]  
are diagonal matrices with the diagonal terms given by 

It is assumed that the modeshapes are also orthogonal to the damping matrix, and that 
[ C*] is given by 

and { L }  is given by 

NDOF 

k =  1 

and in EQ 18, mk is the mass lumped at DOF “k” and Aki is the component at DOF “k” of 

the “ith” mode. 

Equation 14 provides a set of decoupled equations in normal coordinate space, the “ith” 
modal equation is given by 

SDOF 

The equation of motion of a single degree of freedom system subjected to base accelera- 
tion is given by 

mx, + 2pomx, + kx, = mXg(t) (EQ 20) 

The response spectrum ordinates provide a plot of the maximum values obtained from this 
equation as a function of system frequency (or period). Thus the spectral ordinates essen- 
tially provide a solution of the linear equation given in EQ. 20. The spectral types of 
importance here are the relative displacement spectrum and the absolute acceleration spec- 
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trum (Fig. 1). The “ith” modal equation (EQ 19) and the SDOF equation of motion (EQ 

sd 

t 

FIGURE 1. Response spectrum. a) relative displacement spectrum; b) absolute 
acceleration spectrum 

20) can be rewritten 

Y i  + 2p0,Yz  + ai 2 Y i  = -ig(f) Li 
mii 

2 x r + 2 p 0 x r + 0  x ,  = i g ( t )  (EQ 22) 

Comparing EQ 2 1 and EQ 22, and relying on the linearity of the equations, the maximum 
normal mode coordinate can be obtained from the spectral displacement ordinate via sim- 
ple linear scaling, 

Li 
mii 

y i m a x  = -sd (EQ 23) 

To express the maximum normal mode coordinate in terms of spectral acceleration 
requires the utilization of the fact that in the SDOF system, the peak inertial force and the 
peak elastic forces occur at nearly the same instant in time (i.e. when the peak relative dis- 
placement occurs the accelerations are also a maximum) and the peak elastic and inertial 
forces are nearly equal (the velocity is approximately zero at the peak response and thus 
the damping forces are approximately zero). For the SDOF freedom system this can be 
expressed as 

or 

mSa = kS ,  (EQ 25) 
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thus 

Sa S,= - 2 
0 

Combining EQ 26 and EQ 23 yields, 

The maximum normal coordinate is thus 

NDOF 

k = l  

Similarly to the SDOF system, for a MDOF structure vibrating in the “ith” mode, the max- 
imum inertial forces are approximately equal to the maximum elastic forces thus, 

Combining EQ 29 and EQ 28 yields 

C.fIm,, = [Ml-’[KICA,l  

NDOF 

From the MDOF eigenproblem (EQ 7), 

[ M I - ’ [ K ] { A , }  = @;{A, }  

(EQ 30) 
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3.0 Example problems 

To evaluate the potential acceleration amplification in a simple system, the two degree of 
freedom mass system shown in Fig. 2 is considered. 

- Sample Acceleration Spectrum (pga=l g) 

Masses: 
M= 1 .O 13 

Bars: 
0 1 x 1  

Area= 1 
E= 100,000 
1 = 100 

Vertical ground 
motion 

0000 

1000 

100 

10 
0.01 0.1 1 10 4 Period (sec) 

~ ~~ ~ 

FIGURE 2. Sample two degree of freedom problem 

The eigenproblem for this simple structure is given by, 

02[M1{A> = [KI{A> (EQ 33) 

or 

[[KI - 02[M11{A> = {O> (EQ 34) 

The homogeneous system of equations given in EQ 34 can have a solution only if the 
coefficient matrix is rank deficient, i.e. 

d e t [ [ ~ ]  - O ~ [ M I I  = o 
Writing EQ 34 in terms of the problem parameters yields, 

and the determinantal equation becomes, 

(EQ 35) 
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1 . 0 2 6 ( ~ ~ ) ~ -  3039(02) + 1x106 (EQ 37) 

2 Solving this quadratic equation for o yields o1 = 50.78 rad/sec and o2 = 19.58 rad/ 
sec. Back-substituting the eigenvalues into EQ 36 yields the eigenvectors and the results - 

are summarized in Fig. 3. 

e i 1.0 

Mode #1 Mode #2 
F=3.11 Hz 

(T = 0.322 sec) 
F = 8.08 Hz 

(T = 0.124 sec) 

FIGURE 3. Analytical modeshapes and frequencies of the 2 DOF system 

The peak accelerations due to each mode are given by EQ 32, and the modal accelerations 
are summarized in Fig. 4. Performing an SRSS modal combination, the response spectrum 

i 959.2 in/sec2 

4 1 585.1 idsec' 

7 140.9idsec' 

" 1 230.9 in/sec2 ii 

Mode #1 Mode #2 

FIGURE 4. Peak modal accelerations for the 2 DOF system 

acceleration estimates are given in Fig. 5. For comparison the acceleration values obtained 
from a GEMINI computer model of this system are also shown in Fig. 5. The analytical 
and GEMINI solution are in very good agreement. Comparing Fig. 5 and Fig. 2, it is clear 
that a MDOF dynamical system can have acceleration values in exceedance of the peak 
spectral values. 
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1 969.5 in/sec2 (GEMINI computation gives 967.1 in/sec2) 

I ,  

I ,  629.0 in/sec2 (GEMINI computation gives 632.7 in/sec2) 

FIGURE 5. System accelerations obtained from analytical and GEMINI solutions 

The simple example given above validates the GEMINI solutions numbers and illustrates 
the ability to get structural accelerations over and above the spectral amplitudes in a 
MDOF system. The simple example shown had a uniform stiffness and mass distribution. 
Significantly more dramatic acceleration amplifications can be observed for a system with 
nonuniform stiffness and mass distribution. Consider the nonuniform system shown in 
Fig. 6. 

Top Mass: 
Area= 1 M=O. 10 13 
E= 10,000 
1 = 100 

Bottom Bar: Bottom Mass: 
Area = 1 M=1.013 
E= 100,000 
1 =  100 

Vertical ground 
motion 

FIGURE 6. Nonuniform two degree of freedom system 

The natural modeshapes and associated frequencies of this system computed with the 
expressions derived above are shown in Fig. 7. The computed modal contributions to the 
accelerations are shown in Fig. 8 and the SRSS modal combination of the accelerations 
are shown in Fig. 9. 

Two things are evident from the plots in Fig. 7 to Fig. 9 and Fig. 2, first the analytically 
derived solution agrees quite well with the GEMINI solution, secondly the in-structure 
accelerations dramatically exceed the spectral accelerations ( 1982 > 8 17) by a factor of 
2.4. 
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e i 1.0 

Mode #1 Mode #2 
F = 4.27 Hz 

(T =0.234 sec) 
F = 5.85 Hz 

(T = 0.171 sec) 
FIGURE 7. Analytical modeshapes and frequencies of a nonuniform 2 DOF system 

4 1750in/sec2 

9 : :  A 472in/sec2 

Mode #1 

9 -+- 931.6in/sec2 
I ,  

8 ,  

IXXXXXXX# 
Mode #2 

FIGURE 8. Peak modal accelerations for the 2 DOF system 

1 1982 in/sec2 (GEMINI computation gives 1982 in/sec2) e 

I ,  

6 585 in/sec2 (GEMINI computation gives 585 in/sec2) 
, I  

FIGURE 9. System accelerations obtained from analytical and GEMINI solutions 
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These acceleration amplification levels can be understood when it is recognized that for 
this second system the top portion is significantly less massive than the bottom and signif- 
icantly more flexible. This results in the bottom portion acting essentially like a SDOF 
system which amplifies the ground motion, which in turn provides input to the smaller 
second system above. The second system then reamplifies the already amplified motion to 
get the very large accelerations at the top. This effect is shown schematically in Fig. 10. 

Secondary structure responds to 
already amplified ground motion 

Ground 
motion amplified 
by stiff and massive 
bottom portion of structure 

Vertical ground 
motion 

FIGURE 10. Physics of system which attains large structural accelerations 
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